Although substantial efforts have been made using graph neural networks (GNNs) for AI-driven drug discovery (AIDD), effective molecular representation learning remains an open challenge, especially in the case of insufficient labeled molecules. Recent studies suggest that big GNN models pre-trained by self-supervised learning on unlabeled datasets enable better transfer performance in downstream molecular property prediction tasks. However, they often require large-scale datasets and considerable computational resources, which is time-consuming, computationally expensive, and environmentally unfriendly. To alleviate these limitations, we propose a novel pre-training model for molecular representation learning, Bi-branch Masked Graph Transformer Autoencoder (BatmanNet). BatmanNet features two tailored and complementary graph autoencoders to reconstruct the missing nodes and edges from a masked molecular graph. To our surprise, BatmanNet discovered that the highly masked proportion (60%) of the atoms and bonds achieved the best performance. We further propose an asymmetric graph-based encoder-decoder architecture for either nodes and edges, where a transformer-based encoder only takes the visible subset of nodes or edges, and a lightweight decoder reconstructs the original molecule from the latent representation and mask tokens. With this simple yet effective asymmetrical design, our BatmanNet can learn efficiently even from a much smaller-scale unlabeled molecular dataset to capture the underlying structural and semantic information, overcoming a major limitation of current deep neural networks for molecular representation learning. For instance, using only 250K unlabelled molecules as pre-training data, our BatmanNet with 2.575M parameters achieves a 0.5% improvement on the average AUC compared with the current state-of-the-art method with 100M parameters pre-trained on 11M molecules.
translated by 谷歌翻译
本文介绍了Speakin团队提交的SPEAKER验证(SV)系统,该系统针对2022年远场演讲者验证挑战(FFSVC2022)的任务2和任务2。挑战的SV任务集中在完全监督的远场演讲者验证(任务1)和半监督远场扬声器验证(任务2)的问题上。在任务1中,我们将Voxceleb和FFSVC2020数据集用作火车数据集。对于任务2,我们仅将Voxceleb数据集用作火车集。为此挑战开发了基于重新连接和基于REPVGG的架构。全局统计池结构和MQMHA池结构用于跨时间汇总框架级特征,以获得语音级别的表示。我们采用了Am-Softmax和Aam-Softmax来对产生的嵌入进行分类。我们创新提出了一种分阶段的转移学习方法。在训练阶段,我们保留扬声器的权重,并且在此阶段没有积极的样本来训练它们。然后,我们在第二阶段用正面和负样品微调这些权重。与传统的转移学习策略相比,该策略可以更好地改善模型性能。亚均值和标志的后端方法用于解决域不匹配的问题。在融合阶段,任务1中融合了三个模型,并在任务2中融合了两个模型。在FFSVC2022排行榜上,我们提交的EER为3.0049%,在Task1中,相应的MindCF为0.2938。在任务2中,EER和MindCF分别为6.2060%和0.5232。我们的方法可以提高表现出色,并在两项挑战任务中排名第一。
translated by 谷歌翻译
本报告描述了我们针对CN-CELEB演讲者识别挑战2022(CNSRC 2022)任务的发言人验证系统。这项挑战包括两项任务,即演讲者验证(SV)和说话者检索(SR)。 SV任务涉及两个轨道:固定轨道和开放轨道。在固定轨道中,我们仅使用CN-CELEB.T作为训练集。对于SV任务和SR任务的开放轨道,我们添加了开源音频数据。为此挑战开发了基于重新连接的基于RESNET,基于REPVGG和基于TDNN的架构。全局统计池结构和MQMHA池结构用于跨时间汇总框架级特征,以获得语音级别的表示。我们采用了Am-Softmax和Aam-Softmax与子中心方法相结合,以对所得的嵌入进行分类。我们还使用了大规模细微调整策略来进一步提高模型性能。在后端,使用了亚均值和雅语。在SV任务固定轨道中,我们的系统是五个型号的融合,并且在SV任务打开轨道中融合了两个型号。我们在SR任务中使用了一个系统。我们的方法带来了卓越的性能,并成为SV任务的开放轨道,在SV任务的固定轨道中的第二名以及SR任务中的第三名。
translated by 谷歌翻译
在智能决策系统的核心上,如何代表和优化政策是一个基本问题。这个问题的根源挑战是政策空间的大规模和高复杂性,这加剧了政策学习的困难,尤其是在现实世界中。对于理想的替代政策领域,最近在低维潜在空间中的政策表示表明其在改善政策的评估和优化方面的潜力。这些研究所涉及的关键问题是,我们应根据哪些标准抽象出所需的压缩和泛化的政策空间。但是,文献中对政策抽象的理论和政策表示学习方法的研究较少。在这项工作中,我们做出了最初的努力来填补空缺。首先,我们提出了一个统一的政策抽象理论,其中包含与不同级别的政策特征相关的三种类型的策略抽象。然后,我们将它们推广到三个策略指标,以量化政策的距离(即相似性),以便在学习策略表示方面更方便使用。此外,我们建议基于深度度量学习的政策表示学习方法。对于实证研究,我们研究了拟议的政策指标和代表的功效,分别表征政策差异和传达政策概括。我们的实验均在政策优化和评估问题中进行,其中包含信任区域政策优化(TRPO),多样性引导的进化策略(DGES)和非政策评估(OPE)。自然而然地,实验结果表明,对于所有下游学习问题,都没有普遍的最佳抽象。虽然影响力 - 反应抽象可以是通常的首选选择。
translated by 谷歌翻译
具有对比性学习目标的预训练方法在对话了解任务中表现出了显着的成功。但是,当前的对比学习仅将自调查的对话样本视为正样本,并将所有其他对话样本视为负面样本,即使在语义上相关的对话框中,也会强制执行不同的表示。在本文中,我们提出了一个树木结构化的预培训对话模型Space-2,该模型从有限标记的对话框和大规模的无标记的对话框COLPORA通过半监督的对比度预培训来学习对话框表示。具体而言,我们首先定义一个通用的语义树结构(STS),以统一不同对话框数据集的注释模式,以便可以利用所有标记数据中存储的丰富结构信息。然后,我们提出了一个新颖的多视图分数功能,以增加共享类似STS的所有可能对话框的相关性,并且在监督的对比预训练期间仅推开其他完全不同的对话框。为了充分利用未标记的对话,还增加了基本的自我监督对比损失,以完善学习的表示。实验表明,我们的方法可以在DialogLue基准测试中实现新的最新结果,该基准由七个数据集和四个流行的对话框组成。为了获得可重复性,我们在https://github.com/alibabaresearch/damo-convai/tree/main/main/space-2上发布代码和数据。
translated by 谷歌翻译
尽管在半监督语义细分领域的进度程度不同,但其最近的大部分成功都涉及笨拙的模型,并且尚未探索轻量级解决方案。我们发现,现有的知识蒸馏技术更多地关注标签数据中的像素级概念,该数据未能在未标记的数据中考虑更有用的线索。因此,我们提供了首次尝试通过新颖的多晶蒸馏(MGD)方案提供轻量级SSS模型,其中从三个方面捕获了多个跨性别:i)互补的教师结构; ii)标记为未标记的数据合作蒸馏; iii)分层和多层次损失设置。具体而言,MGD被配制为标记的未标记数据合作蒸馏方案,该方案有助于充分利用在半监督环境中必不可少的不同数据特征。图像水平的语义敏感损失,区域级别的内容感知损失和像素级的一致性损失是通过结构互补的教师来丰富层次蒸馏抽象的。 Pascal VOC2012和CityScapes的实验结果表明,在不同的分区协议下,MGD可以超越竞争方法。例如,在1/16的CityScapes分区协议下,RESNET-18和MOBILENET-V2主链的性能分别增长了11.5%和4.6%。尽管模型骨干的拖曳量被3.4-5.3倍(RESNET-18)和38.7-59.6X(MobileNetV2)压缩,但该模型旨在实现令人满意的分割结果。
translated by 谷歌翻译
学习准确的深度对于多视图3D对象检测至关重要。最近的方法主要是从单眼图像中学习深度,由于单眼深度学习的性质不足,这会面临固有的困难。在这项工作中,我们提出了一种新颖的环绕时间立体声(STS)技术,而不是使用唯一的单眼深度方法,而是利用跨时间之间的几何对应关系来促进准确的深度学习。具体而言,我们将自我车辆周围所有相机的视野视为统一的视图,即环绕浏览量,并在其上进行暂时立体声匹配。利用与STS不同框架之间的几何对应关系并与单眼深度结合在一起,以产生最终的深度预测。关于Nuscenes的综合实验表明,STS极大地提高了3D检测能力,特别是对于中距离和长距离对象。在带有RESNET-50骨架的BEVDEPTH上,STS分别提高了MAP和NDS,分别提高了2.6%和1.4%。当使用较大的主链和较大的图像分辨率时,观察到一致的改进,证明了其有效性
translated by 谷歌翻译
准确的蛋白质结合亲和力预测在药物设计和许多其他分子识别问题中至关重要。尽管基于机器学习技术的亲和力预测取得了许多进步,但由于蛋白质 - 配体结合取决于原子和分子的动力学,它们仍然受到限制。为此,我们策划了一个包含3,218个动态蛋白质配合物的MD数据集,并进一步开发了DynaFormer,这是一个基于图的深度学习框架。 DynaFormer可以通过考虑相互作用的各种几何特征来完全捕获动态结合规则。我们的方法显示出优于迄今报告的方法。此外,我们通过将模型与基于结构的对接整合在一起,对热休克蛋白90(HSP90)进行了虚拟筛选。我们对其他基线进行了基准测试,表明我们的方法可以鉴定具有最高实验效力的分子。我们预计大规模的MD数据集和机器学习模型将形成新的协同作用,为加速药物发现和优化提供新的途径。
translated by 谷歌翻译
由于复杂的注意机制和模型设计,大多数现有的视觉变压器(VIT)无法在现实的工业部署方案中的卷积神经网络(CNN)高效,例如张力和coreml。这提出了一个独特的挑战:可以设计视觉神经网络以与CNN一样快地推断并表现强大吗?最近的作品试图设计CNN-Transformer混合体系结构来解决这个问题,但是这些作品的整体性能远非令人满意。为了结束这些结束,我们提出了下一代视觉变压器,以在现实的工业场景中有效部署,即下一步,从延迟/准确性权衡的角度来看,它在CNN和VIT上占主导地位。在这项工作中,下一个卷积块(NCB)和下一个变压器块(NTB)分别开发出用于使用部署友好机制捕获本地和全球信息。然后,下一个混合策略(NHS)旨在将NCB和NTB堆叠在有效的混合范式中,从而提高了各种下游任务中的性能。广泛的实验表明,在各种视觉任务方面的延迟/准确性权衡方面,下一个VIT明显优于现有的CNN,VIT和CNN转换混合体系结构。在Tensorrt上,在可可检测上,Next-Vit超过5.4 MAP(从40.4到45.8),在类似延迟下,ADE20K细分的8.2%MIOU(从38.8%到47.0%)。同时,它可以与CSWIN达到可比的性能,而推理速度则以3.6倍的速度加速。在COREML上,在类似的延迟下,在COCO检测上,下一步超过了可可检测的4.6 MAP(从42.6到47.2),ADE20K分割的3.5%MIOU(从45.2%到48.7%)。代码将最近发布。
translated by 谷歌翻译
最近,基于合成数据的实例分割已成为一种极其有利的优化范式,因为它利用模拟渲染和物理学来生成高质量的图像宣传对。在本文中,我们提出了一个并行预训练的变压器(PPT)框架,以完成基于合成数据的实例分割任务。具体而言,我们利用现成的预训练的视觉变压器来减轻自然数据和合成数据之间的差距,这有助于在下游合成数据场景中提供良好的概括,几乎没有样本。基于SWIN-B基的CBNET V2,基于SWINL的CBNET V2和SWIN-L基统一器用于并行特征学习,并且这三个模型的结果由像素级非最大最大抑制(NMS)算法融合来获得更强大的结果。实验结果表明,PPT在CVPR2022 AVA可访问性视觉和自主性挑战中排名第一,地图为65.155%。
translated by 谷歌翻译